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Many diseases have no visual cues in the early stages, elud-
ing image-based detection. Today, osteoarthritis (OA) is detected
after bone damage has occurred, at an irreversible stage of the
disease. Currently no reliable method exists for OA detection at
a reversible stage. We present an approach that enables sensi-
tive OA detection in presymptomatic individuals. Our approach
combines optimal mass transport theory with statistical pattern
recognition. Eighty-six healthy individuals were selected from the
Osteoarthritis Initiative, with no symptoms or visual signs of dis-
ease on imaging. On 3-y follow-up, a subset of these individuals
had progressed to symptomatic OA. We trained a classifier to dif-
ferentiate progressors and nonprogressors on baseline cartilage
texture maps, which achieved a robust test accuracy of 78% in
detecting future symptomatic OA progression 3 y prior to symp-
toms. This work demonstrates that OA detection may be possible
at a potentially reversible stage. A key contribution of our work is
direct visualization of the cartilage phenotype defining predictive
ability as our technique is generative. We observe early biochem-
ical patterns of fissuring in cartilage that define future onset of
OA. In the future, coupling presymptomatic OA detection with
emergent clinical therapies could modify the outcome of a dis-
ease that costs the United States healthcare system $16.5 billion
annually. Furthermore, our technique is broadly applicable to ear-
lier image-based detection of many diseases currently diagnosed
at advanced stages today.

early diagnosis | classification | 3D transport-based morphometry |
osteoarthritis | T2 imaging

Early diagnosis is a common goal in many diseases where
timely intervention has the potential to modify disease out-

come. For example, early detection of skin cancer (1) reduces
mortality and timely diagnosis of retinopathy (2) can prevent
blindness. Yet, in the early stages of a disease, observable cues
are often not visually perceptible. Therefore, many diseases
today are still diagnosed at advanced stages, after irreversible
damage has occurred. The discovery and visualization of early
markers of a disease before the emergence of symptoms is an
area of immense interest.

Presymptomatic detection is a goal in osteoarthritis (OA),
which affects as many as one in four adults (3). However, OA is
currently not detectable until pain develops and an X-ray image
confirms bone damage (4). Unfortunately, at this late stage, the
disease is not reversible and joint destruction is an inevitable out-
come (5). The mainstay of current treatments focuses on either
palliation or invasive surgery. Despite current interventions, OA
costs the US healthcare system $16.5 billion/y (6). Yet, there is

recent evidence that preosteoarthritis may be a reversible pro-
cess (7). In particular, early biochemical changes that occur in
cartilage (8–10) precede classic pain and bone damage symp-
toms by several years (11, 12). In vivo T2-weighted magnetic
resonance imaging (MRI) is a promising modality to investi-
gate these changes. Specifically, the transverse relaxation time is
highly sensitive to perturbations in collagen fiber isotropy and
water content (13). However, the current gold standard relies
on evidence of bone damage because both visual inspection and
conventional statistics are insensitive to early signs of disease in
the cartilage. Early biochemical shifts, superficial grooves, and
cartilage fibrillation are often too subtle and complex to be read-
ily perceptible (7, 13–16). Fig. 1 illustrates T2 texture maps of
knee articular cartilage in healthy individuals. In 3 y time, one of
these groups is known to progress to symptomatic knee OA with
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Fig. 1. Medial condyle images corresponding to individual subjects. Shown are T2 images of cartilage belonging to two groups of asymptomatic subjects.
In 3 y, only one of these groups will go on to develop clinical OA, although it is currently not visually discernible. The latter motivates advanced pattern
learning approaches to discover and visualize the abnormal variation leading to discrimination between the two groups. Scale bars correspond to the
normalized T2 intensity for each cartilage image.

pain and bone damage. However, at the current timepoint, these
groups are indistinguishable to a visual observer.

In fact, Fig. 1 illustrates a present challenge in early
osteoarthritis detection today (17). Currently, a reliable method
for early OA detection based on cartilage images does not exist
(17), despite recent studies utilizing machine learning for image-
based detection (11, 12, 18). However, the ability to detect
and visualize early changes at a potentially reversible stage
could enable additional investigational disease-modifying ther-
apies (i.e., mesenchymal stem cells, platelet-rich plasma, etc.)
(19–21). Furthermore, a visualizable early trace of biochemi-
cal injury could further motivate research into investigational
modalities such as T1ρ to monitor the status of specific cartilage
macromolecules (22, 23).

As Fig. 1 illustrates, visual cues of early OA are lacking. Prior
data-driven approaches have trained machine-learning classifiers
on ad hoc numerical texture features (e.g., Tamura texture statis-
tics, histogram statistics, Zernicke polynomials, etc.) (11, 12, 18,
24, 25) to improve upon the prognostic capabilities of conven-
tional T2 imaging (11, 12, 26). However, these approaches did not
provide sufficient information to make robust prediction or prog-
nostication (17). Furthermore, there has been a long-standing gap
in biological interpretation, as there is no direct biological inter-
pretation of Zernicke polynomials or wavelet coefficients into
understandable biochemical tissue properties. If early cartilage
signatures could inform risk of future symptomatic OA progres-
sion, these early signatures could motivate additional targets for
disease-modifying osteoarthritis drugs (DMOADs) (17).

The goal of this research is to develop a technique to dis-
cover and visualize the early trace of biochemical cartilage injury
that may enable OA detection at a potentially reversible stage.
We develop an approach combining optimal mass transport
theory and statistical pattern recognition to directly quantify
the mass transport required in cartilage tissue to transform
one morphology into another. We call our approach three-
dimensional transport-based morphometry (3D TBM), and its
theoretical foundations are described in prior studies (27–31).
This paper focuses on extensions and modifications to this tech-
nique to enable the state of the art in early OA detection
based on cartilage maps. In contrast to traditional supervised-
learning approaches, our approach does not require a priori
features. Furthermore, while traditional feature-based learning
approaches are based on algorithms lacking provable guarantees,
our approach is based on optimal mass transport (OT) theory
and is generative. The latter enables direct visualization of the
learned discriminant through inverse transformation (28).

This paper describes an application of 3D TBM for medi-
cal image classification. We apply our framework to develop
and evaluate a blind predictive test for future symptomatic OA
based on 86 healthy individuals. Comparing our classifier’s pre-
dictions with gold standard diagnosis established at 3 y follow-up,

we see that our approach may potentially enable preclinical
OA detection at a reversible stage and outperforms traditional
supervised-learning approaches at this task. Furthermore, our
approach enables the discriminating phenotypes defining future
OA progression to be directly visualized.

The following are contributions of this paper: a genera-
tive pattern learning technique for cartilage phenotype analy-
sis that has foundations in optimal mass transport theory, 3D
transport-based morphometry; a predictive approach that could
potentially detect future symptomatic osteoarthritis up to 3 y
in advance of symptoms at a reversible stage of the disease;
evaluation of our predictive approach through precision-recall
characteristics using balanced cross-validation and null hypothe-
sis testing, as well as comparison to existing supervised-learning
approaches; visualization of the cartilage texture phenotypes
sensitive for future OA progression through inverse transport
mapping, enabled by inverse 3D transport-based morphometry;
and additional understanding of the water distribution patterns
in cartilage underpinning presymptomatic detection.

This work highlights the potential of our approach to expand
the diagnostic capabilities of conventional MRI in preclinical
OA detection. The remainder of this paper is organized as fol-
lows. Methods: 3D Transport-Based Morphometry contains a brief
overview of the mathematical foundations of our approach as
well as experimental methodology. We summarize our results
in Results. Discussion of key results is presented in Discussion.
Finally, Conclusion explores the implications of this work and
future directions.

Results
Subject Demographics. Between progressor and control cohorts,
there were no statistically significant differences in age (P =
0.11), but differences in body mass index (BMI) were statis-
tically significant (P < 0.001). There was no significant dif-
ference in the level of baseline physical activity between the
two cohorts, as measured by the Physical Activity Scale for the
Elderly (PASE) (32). Total Western Ontario and McMaster
Universities Arthritis Index (WOMAC) (33) was significantly
different while Kellgren–Lawrence (KL) scores (34) were not
significantly different between progressor and nonprogressor
cohorts at baseline. Table 1 summarizes subject demographics.

Age, BMI, and gender predicted OA progression with accu-
racy above random chance (sensitivity = 53.5%, specificity =
65.1%). However, the Cohen’s kappa was 0.19. Thus, demo-
graphic metrics were not sufficient to enable discrimination with
high sensitivity and specificity (Table 2).

Characterizing Principal Phenotypes. The variability in the dataset
was represented by fewer principal components in the transport
domain compared to the image domain. Fig. 2 shows the variance
plot for cartilage texture. Thus, the underlying structure of the
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Table 1. Subject demographics

Parameter Progressors (n = 43) Control (n = 43) P

Age, y 60.0 ± 9.1 56.8 ± 9.1 0.11
BMI, kg/m2 29.1 ± 3.8 25.8 ± 3.7 <0.001
Mean PASE 169.8 ± 95.8 189.8 ± 65.9 0.26
Mean initial WOMAC 3.6 ± 3.0 1.2 ± 2.2 <0.001
Mean initial KL 0.4 ± 0.5 0.3 ± 0.5 0.4
Mean 3-y ∆WOMAC 23.9 ± 10.0 −0.4 ± 2.0 <0.001
Mean 3-y ∆KL 0.4 ± 0.8 0.1 ± 0.6 0.2

PASE score from the OAI was missing for one control subject; KL score at
3 y follow-up from the OAI was missing for two control subjects and one
progressor subject.

data was better captured in the transport domain than the image
domain.

Classification. Although future OA progression was not readily
differentiable from Fig. 1 through inspection, the classes were
separable in the transport space. Fig. 3A shows the histogram
indicating cohort separation based on cartilage texture maps
when the test data were projected onto the learned discriminant.
The training accuracy was 92.9%.

We evaluated precision-recall characteristics using receiver-
operator characteristic (ROC) curves as the discrimination
threshold was varied (Fig. 3B), with an area under the curve
(AUC) 0.87.

In the testing phase, we evaluated the blind predictive accu-
racy in identifying future osteoarthritis progression from baseline
cartilage texture maps using 3D TBM. Table 2 summarizes the
overall accuracy, sensitivity, and specificity on the test data when
iterating over all combinatorial partitions of leave-two-out bal-
anced cross-validation. The penalized linear discriminant anal-
ysis (pLDA) classification scheme and complete leave-two-out
cross-validation approach are described in Supervised Learning
and Balanced Cross-Validation.

Furthermore, based on the results in Table 2, we rejected the
null hypothesis; the probability that the predictive test developed
in this paper had learned a model between baseline cartilage tex-
ture maps and future OA progression through chance alone was
less than 1 in 1,000.

Comparison to Existing Supervised-Learning Approaches. Our pre-
dictive test utilizing a penalized linear discriminant classifier
under the 3D TBM approach enables the highest predictive
accuracy, as Table 3 indicates.

Collectively, supervised learning in the transport domain
enabled the highest predictive accuracies, followed by the image
domain and finally weighted neighbor distance using com-
pound hierarchy of algorithms representing morphology (WND-
CHRM) features (35) extracted from the original images. On
the transport domain embeddings, nonlinear classifiers using
support vector machine with Gaussian kernel and random for-
est classifiers did not lead to superior predictive ability over
the linear discriminant classifier. Sensitive discrimination in the
transport space is possible using Euclidean distances because
3D TBM computes a linearized version of the OT distance,
described as a generalized geodesic (30). Therefore, complex,

nonlinear, and spatially diffuse shifts in the image domain can
be discriminated using simpler classifiers in the transport domain
(28, 30, 36).

Visualizing the Discriminating Cartilage Phenotype. Our approach,
3D transport-based morphometry, is generative. The latter
enables direct visualization of the discriminating shifts in carti-
lage phenotype learned by a classification model. The images in
Figs. 4–6 were synthesized from the images in the study popula-
tion by 3D TBM. By sampling along the discriminant direction
in the transport space and inverting the classifier Eq. 2, we
visualized the characteristic shifts in T2 texture defining TBM
classification. The cartilage texture maps were colorized for ease
of visual interpretation.

We observed that the early T2 texture shifts sensitive for future
symptomatic OA were largely localized to the center of the knee.
In the medial compartment, the lateral aspect of the femoral car-
tilage demonstrated intensity increase, while the tibial cartilage
demonstrated intensity diffusion (Fig. 4). In the lateral compart-
ment, there were changes observed in the medial aspect of both
the femoral and tibial cartilage as well. The pattern of bright-
ness in intensity appeared to become more diffuse for progressor
images compared to control images in the femoral cartilage and
more focal in the tibial cartilage (Fig. 5). Finally, we observed
focal intensity increase in the patellar cartilage of progressors
compared to controls (Fig. 6).

Discussion
Many diseases have no visual cues in the early stages, eluding
image-based detection. This paper focused on osteoarthritis, for
which there exists no reliable detection method in the presymp-
tomatic phase (17). Yet, with emergent DMOADs, early OA
detection is a challenge of great interest (17). This research
demonstrated an approach enabling osteoarthritis detection in
presymptomatic healthy individuals at a potentially reversible
stage. By developing a technique combining optimal mass trans-
port theory and statistical pattern recognition, we identified risk
of progression 3 y before the gold standard diagnosis using the
cartilage texture phenotype. In addition to differentiating pro-
gressors and nonprogressors in an automated manner, a key con-
tribution of our technique, 3D transport-based morphometry, is
that it is generative. Inverse TBM transformation visualized the
early biochemical shifts in cartilage texture that could underlie
risk of progression to symptomatic OA. The latter is a contribu-
tion enabled by the fact that 3D TBM is a generative technique.
Direct visualization enables understanding of the mechanisms
of early OA in the preclinical phase. As recent studies indicate
that OA in the stages preceding bone damage may potentially
be reversible (7), this work adds to the growing body of liter-
ature suggesting that disease-modifying therapies for OA may
become feasible in the future. Furthermore, we demonstrated
the potential of 3D transport-based morphometry as a diagnostic
technique capable of earlier detection, which may be applicable
to other diseases.

Previous work using machine learning investigated whether
numerical texture features (i.e., histogram statistics, entropy,
Tamura features, etc.) (11, 12, 26) were sensitive for predict-
ing future OA risk. However, approaches to date have not
provided sufficient information to make robust prediction or
prognostication (17). Using a priori features limits the search for

Table 2. Complete leave-two-out cross-validation results using demographic information
and TBM

Region Test accuracy, % Sensitivity, % Specificity, % Cohen’s kappa P

Cartilage TBM 78.0 76.9 79.0 0.56 <0.001
Age, BMI, and gender 59.3 53.5 65.1 0.19 0.03
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Fig. 2. The variance plot demonstrates that fewer components were
needed to represent tricompartment knee cartilage images in the 3D TBM
space than in the original image domain.

possible discriminating information. Furthermore, comparing
images through sets of numerical features does not lead to an
invertible model. Finally, there is no direct physical interpreta-
tion of a predictive model constructed in this manner (11, 28, 30).
These algorithmic approaches also lack provable guarantees. In
contrast to these methods, 3D TBM discovers the discriminating
information in a fully automated manner without the need for
a priori features. Three-dimensional TBM has a rich theoretical
foundation with equations for analysis and synthesis (28), which
we extend and modify for medical image classification. This study
bridges the gap between classification ability and direct biochem-
ical perturbations within the cartilage tissue defining future OA
progression. A key contribution of our approach is the ability to
directly visualize the texture shifts enabling sensitive classifica-
tion for visual understanding of a process that is otherwise not
well assessed visually or through conventional statistics.

Three-dimensional TBM is advantageous as a data-mining
technique. First, it is a fully automated approach. It facilitates
information extraction by representing high-dimensional, non-
linear perturbations in the image domain through more sparse
distances in the transport domain (27–31). This research demon-
strated that a linear discriminant in the transport domain dif-
ferentiated progressors and nonprogressors to a clinically useful
degree. Linear classifiers often have a favorable bias–variance
tradeoff, especially in the classification of high-dimensional data
like medical images (37). Furthermore, nonlinear classifiers may
offer high classification accuracy but typically come at the tradeoff
of variance and overfitting when the number of samples is small
compared to the complexity of the model. Furthermore, as dis-
cussed above, the latter techniques are typically not generative.
Because our approach is able to map complex, nonlinear shifts
in texture profile (geodesic distances) to Euclidean distances in
the transport domain (30), we demonstrated that linear classifica-
tion in the transport domain could outperform existing supervised
classifiers such as kernel support vector machine (SVM) and
random forest to enable the state of the art in early OA detection.

Visually, we observe that our TBM approach identified water
distribution in cartilage as key in enabling symptomatic predic-
tion of future OA. By assessing water distribution, we achieved
78% accuracy on a validation set, higher than many studies in
the literature to date (11, 12, 28). However, beyond classification
ability, the greatest advance of our approach compared to exist-

ing studies is the ability to directly visualize structural changes in
cartilage in vivo that enable sensitive classification. The ability to
visualize markers of disease and health could identify treatments
and interventions.

Our cohort consisted of baseline healthy patients from the
Osteoarthritis Initiative (OAI) database (38), with a progres-
sor subcohort determined by change in total WOMAC score
on 3 y follow-up. We observed that in presymptomatic indi-
viduals, early texture shifts were localized to the center of the
knee. We observed a focal increase and decrease in water con-
centration in the medial femoral and medial tibial cartilage,
respectively. In the lateral compartment, we observed decrease
in water concentration in the femoral cartilage and increase in
the tibial cartilage. We also observed focal intensity increase in
the patellofemoral cartilage. A possible mechanistic explanation
involves fissuring of fibrous tissue and diffusion of water into
areas of weakened cartilage, which is high intensity on the T2
images. Prior work supports this proposed mechanism. Both car-
tilage water content and collagen fiber anisotropy increase in
early OA (10). The patterns of early cartilage injury found in this
study are consistent with patterns of tibiofemoral bone damage
seen on arthroscopic and cadaveric specimens in prior studies.
Wear in the middle third of both the lateral and medial femoral
articular cartilage has been implicated on osteoarthritic cadav-
eric knees (39). Furthermore, our findings corroborate known
findings that biochemical changes in the tibiofemoral articulation
correspond between surfaces (39). Imaging offers a noninva-
sive assessment of subtle biochemical and structural alterations

Fig. 3. Transport-based discrimination based on cartilage texture maps. (A)
Histogram illustrating the projection of the test dataset onto the learned
pLDA classifier boundary. (B) Corresponding receiver-operator characteristic
curve (AUC = 0.87).
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Table 3. Comparing classification results using complete leave-two-out cross-validation

Classifier for cartilage texture maps Test accuracy, % Sensitivity, % Specificity, % Cohen’s kappa P

Original image pLDA 64.5 61.5 67.4 0.29 < 0.001
Original image SVM (Gaussian kernel) 63.2 65.5 60.9 0.26 <0.001
Original image RF 54.9 39.0 70.7 0.10 <0.001
TBM pLDA 78.0 76.9 79.0 0.56 <0.001
TBM SVM (Gaussian kernel) 74.1 78.0 70.2 0.48 <0.001
TBM RF 70.2 65.0 75.3 0.40 <0.001
WNDCHRM features pLDA 60.8 60.6 61.0 0.22 0.02
WNDCHRM features SVM (Gaussian kernel) 53.3 62.7 43.9 0.07 0.19
WNDCHRM features RF 55.6 48.6 62.6 0.11 <0.001

Among the nine different classifiers, the 3D TBM features employing a linear discriminant classifier achieved the highest
classification accuracy to date. SVM, support vector machine with radial basis function kernel.

caused by interactions of age, BMI, genetic factors, and prior
knee injury (40). The T2 image in normal cartilage undergoes
spatial intensity variation that corresponds to the changes in the
distribution of water molecules, proteoglycans, and orientation
of collagen fibers (8–10). The early perturbations in T2 spa-
tial variation revealed by TBM enhance our understanding of
early OA pathophysiology and may be used to prognosticate or
monitor success of disease-modifying therapies in the future.

We ensured robustness of our automated predictive approach
through several methods. First, by transforming the cartilage tex-
ture maps from the image domain to the transform domain,
we represented the data more sparsely (28) (Fig. 2). As over-
fitting is a potential pitfall of high dimension, low sample size
(HDLSS) data, a sparser representation of the data could mit-
igate incidental correlations of the cartilage dataset with the
progression labels. Second, we utilized the principal compo-

nent analysis technique to reduce the dimensionality of the
feature vector using a basis of orthogonal components. Third,
we eliminated noisy components of the data by including only
the components contributing to the top 96% of the variance
in the dataset. Fourth, we utilized a complete balanced cross-
validation scheme iterating over the combinatorial space of
all feasible leave-two-out partitions of the data. The advan-
tage is that complete cross-validation yields the best general-
ization estimate of the classification accuracy (41). Fifth, we
compared our TBM classification scheme to other classifiers,
confirming that TBM outperformed existing supervised-learning
approaches. Finally, we tested the null hypothesis by explicitly
constructing an empirical estimate of the likelihood that the
observed test accuracy in this paper could be generated from
our proposed predictive test by random chance alone. The like-
lihood that our predictive model learned a relationship between

Fig. 4. Medial compartment images generated by inverse TBM transformation showing the cartilage texture changes enabling detection of future symp-
tomatic OA progression. Here, σ represents standard deviations. These images are synthesized by TBM at the interface of the learned decision boundary
spanning 4σ toward the control side to 4σ toward the progressor side. Scale bars correspond to the normalized T2 intensity for each generated 3D image.
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Fig. 5. Lateral compartment images generated by inverse TBM transformation showing the cartilage texture changes enabling detection of future symp-
tomatic OA progression. Here, σ represents standard deviations. These images are synthesized by TBM at the interface of the learned decision boundary
spanning 4σ toward the control side to 4σ toward the progressor side. Scale bars correspond to the normalized T2 intensity for each generated 3D image.

cartilage phenotype and future OA progression on the current
cohort through chance alone was less than 1 in 1,000.

Next, we describe the limitations of this study. First, this is a
retrospective study investigating whether T2 texture is a sensitive
predictor of future OA. Prospective studies are needed to trans-
late the findings in this study into a clinical tool. Second, this was
an observational study on 86 subjects. With increasing sample
size, machine-learning techniques become more robust to varia-
tions that may exist within a population. Third, there are several
sources of variability in the data, including MRI inhomogeneity,
segmentation, and registration procedure. We correct for many
of these sources of variability in the data by eliminating the data
dimensions containing little or no data with the principal com-
ponents analysis (PCA) technique before a training a classifier.
Finally, future studies are needed to understand the radiologic–
pathologic correlation between biochemical imaging signatures
on MRI and cartilage tissue specimen. Animal studies would be
a first step toward this direction. The knee is one of the most
common sites of osteoarthritis. Future research could also help
elucidate how the present findings generalize to other joints in
the body beyond the knee.

Currently, osteoarthritis is not easily detectable until pain
symptoms occur and irreversible bone damage is demonstrated
on plain radiography. However, even at this late stage of the
disease, radiographic findings correlate poorly with pain symp-
toms and disease progression (4). In the future, our transport-
based learning approach may enable more accurate image-
based assessments of early disease development. Finally, the 3D
transport-based morphometry technique is generally applicable
to any imaging modality and has the potential to be implemented
alongside other magnetic resonance (MR) contrast modalities
such as T1ρ (23) and molecular imaging techniques.

Conclusion
Early diagnosis is a common goal in many diseases where timely
intervention may have the potential to modify disease trajec-
tory. Yet, many diseases remain undetectable until advanced
stages. Our work describes an approach for automated pat-
tern learning in magnetic resonance images. We demonstrated
that our technique, 3D TBM, may enable automated discov-
ery and visualization of discriminating patterns from articular
cartilage maps, even when not easily assessed by visual interpre-
tation. We demonstrated using TBM that future symptomatic
osteoarthritis could potentially be predicted up to 3 y prior
to the current gold standard diagnosis. By assessing the carti-
lage phenotype in healthy individuals using TBM, we designed
a diagnostic approach that achieved clinically useful prognos-
tic accuracy. In contrast to machine-learning techniques built
on algorithms lacking explainability, our approach is based on
the theoretical foundations of optimal mass transport which
permits explainability and furthermore, direct physical inter-
pretation of tissue shifts. TBM provided visualization of the
cartilage phenotype underlying symptomatic OA prediction.
As there is currently no reliable method to detect presymp-
tomatic disease, OA detection at a potentially reversible stage
of the disease could represent a step toward possible disease-
modifying therapies. In the future, TBM may have broader
application in earlier detection in conditions currently diag-
nosed at advanced stages today, such as cancers, retinopathy, and
dementia.

Methods: 3D Transport-Based Morphometry
This section provides a brief overview of our technique, 3D TBM.
Our approach is based on the theory of OT (28). Mathematical
details, including the theoretical foundations of our approach,
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Fig. 6. Patellofemoral cartilage images generated by inverse TBM transformation showing the cartilage texture changes enabling detection of future
symptomatic OA progression. Here, σ represents standard deviations. These images are synthesized by TBM at the interface of the learned decision boundary
spanning 4σ toward the control side to 4σ toward the progressor side. Scale bars correspond to the normalized T2 intensity for each generated 3D image.

are further described in previous publications (27–30, 42). Here,
we describe the modifications and extensions to 3D TBM to
enable presymptomatic OA detection.

Overview. The basic principle of our approach is to quantify the
degree of similarity, or distance, between cartilage texture maps
by measuring the amount of effort (mathematically, mass trans-
ported over distance) to rearrange one image into the other.
The latter leads to a mass-preserving mapping for each image.
We select the mass-preserving mapping that is optimal in the
sense of mass transport, which is a unique solution for a pair
of images. As magnetic resonance images capture water content
across the cartilage tissue, the 3D transport-based morphometry
approach quantifies the mathematical shifts in water distribu-
tion from one image to another, generating a transport map
for each image. Pattern recognition in the transport domain has
been theoretically proved to render many classes of problems
much more separable than in the image domain (43). Further-
more, our approach is fully automated and obviates the need
for a priori features; OT defines a distance metric between
images that considers intensity variations in the context of their
locations (Lagrangian viewpoint) (42). Furthermore, a key con-
tribution of the 3D TBM technique is that it is generative, which
enables the learned classification model in the transport domain
to be interrogated to visualize the biochemical shifts in carti-
lage tissue responsible for sensitive classification through inverse
transformation. Therefore, 3D transport-based morphometry
unifies tasks of discrimination and visualization in a single frame-
work. It is an invertible Lagrangian transformation that pro-
duces a generative model for shape and texture variations in
cartilage.

Analysis Equation. Total mass is first normalized across all
images. Given a set of preprocessed MR images, I1(x ),. . .,IN (x )
corresponding to experimental subjects 1,. . .,N and where x is a
coordinate in 3D space, we can compute a unique transformation
(28) for the image Ii(x ) according to the analysis equation

f ∗i (x ) = argminfi∈MP

∫
Ω

|x − fi(x )|2I0(x )dx

such that det(Dfi(x ))Ii(fi(x )) = I0(x )∀∈Ω,

[1]

where I0(x ) is the reference image. Here MP refers to the space
of mass-preserving mappings. The operator D represents the
Jacobian operator.

Eq. 1 computes the optimal mass-preserving mapping based
on the L2-Wasserstein distance (29, 30) between each source
I1(x ) and template image I0(x ). OT computes the most parsimo-
nious way to rearrange the pixels in one image to match another
(i.e., mass over distance moved). According to Brénier’s theo-
rem (44), under smoothness and domain conditions that our MR
dataset satisfies, the optimal mass-preserving mapping is unique.
Thus, the transformation is bijective.

The transport map f ∗i (x ) generated for each subject i quan-
tifies the unique T2 spatial variation in each image Ii(x ) com-
pared to the common reference image I0(x ) (27–30). Under
a mass-preserving mapping, the resultant transport map cap-
tures shape as well as texture variations between two images
(28). The numerical solution of Eq. 1 was computed through the
multiscale accelerated gradient descent optimization approach
developed in ref. 28 to guide the solution toward the global
optimum.

OT-Based Recognition. We emphasize that in contrast to previous
data-driven approaches based on feature extraction (11, 12, 26),
our approach is generative. Specifically, the metric space defined
by the L2-Wasserstein distance has the geometric structure of a
Riemannian manifold. Pairwise distances between images in the
transform domain can be represented as the length of the short-
est curve, or geodesic, connecting the images on the manifold
(30). Computing pairwise distances between each image and the
template image facilitates the computationally expensive task of
calculating the space of all pairwise distances for classification.
Our approach reduces the number of distance computations
from N (N − 1)/2 to N computations (30, 42) for all pairwise
distances. The geodesic distances are projected onto the tangent
space centered on the fixed template. Thus, we generate linear
embeddings of the OT metric (29, 30), which approximates the
geodesic.

In the transport domain, the model for shape and texture vari-
ations is generative (27–30, 43). The reason that linear analysis
(e.g., linear discriminant analysis, principal component analy-
sis) in the transport domain is highly sensitive for informative
patterns is that discrimination based on Euclidean distances
employs the linearized version of the geodesic. Therefore, linear
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Fig. 7. Consort diagram of inclusion criteria.

analysis in the transport space corresponds to pattern recogni-
tion based on the OT metric in the image domain (29). In fact,
modeling based on the 2-Wasserstein distance is highly sensitive
to complex, high-dimensional, nonlinear image patterns in the
dataset and can represent them more sparsely (28, 43).

Synthesis Equation. As our transport space is generative (OT-
Based Recognition), inverse 3D TBM transformation can gen-
erate images defining the interface between tissue classes. We
emphasize that direct visualization is not limited to the origi-
nal images in the dataset. Rather, the underlying transport space
can be interrogated at any arbitrary point to generate a synthetic
image through inverse TBM transformation.

Particularly, we can choose to sample our transport space
along the linear discriminant direction at the interface between
classes. A sampled embedding from the transport domain f (x )
can be inverted to directly visualize the unique image to which
it corresponds in the image domain I (x ), as the transform is
bijective (28). The synthesis Eq. 2 defines the inverse TBM
transformation:

I (x ) = det(Df −1(x ))I0(f −1(x ))

where f −1(x )is the inverse mapping of f (x ).
[2]

Therefore, inverse TBM transformation closes the gap between
statistics defined by mass transport f (x ) and physical shifts in
water distribution at the level of the tissue in I (x ).

Experimental Methodology
Subject Cohort. Subjects were selected from the Osteoarthritis
Initiative public database (45). The OAI is sponsored by the
National Institutes of Health and is a multicenter (38), longitu-
dinal, prospective study of knee osteoarthritis (38, 45). Eight-six
subjects (43 from the unexposed control subcohort and 43 from
the incidence subcohort) were included in the study.

Nonprogressors were subjects for whom total WOMAC (33)
score was <10 and KL score (34) was ≤1 at baseline, with

36-mo change in WOMAC score <10 and no risk factors for
OA progression. The symptomatic OA progression cohort was
selected based on the same initial baseline criteria, but with a
change in WOMAC score >10 at 3 y follow-up indicating pro-
gression to symptomatic OA. The consort diagram is shown in
Fig. 7. An equal number of control subjects were included in
the analysis. These patients were used to discover and under-
stand the cartilage morphology underlying future symptomatic
OA progression.

OAI exclusion criteria were history of rheumatoid arthri-
tis, bilateral total knee arthroplasty, or positive pregnancy test.
The data was obtained from the OAI database. Institutional
review board approval was obtained by participating institutions
and informed consent was obtained by all participants in the
study (45).

MRI Acquisition. Images were obtained according to the OAI pro-
tocol (38). Sagittal 2D T2-weighted images of the right knee at
baseline were obtained using a standard extremity bird-cage coil
on a MAGENTOM Tri 3T Multisite scanner (Siemens). A multi-
echo spin-echo (MESE) sequence was used with echo time (TE)
linearly increased from 10 to 70 ms to acquire a total of seven
images (repetition time = 2,700 ms, field of view = 120× 120,
matrix 384× 384 with 27 slices of 3 mm thickness). Full details of
MRI acquisition are in Peterfy et al. (38). Baseline knee radio-
graphs were bilateral standing posterior–anterior fixed flexion
view and were graded according to the KL scoring system (46).

Registration, Segmentation, and Preprocessing. For segmentation
and generation of cartilage thickness maps, we used the Knee
Imaging Quantification (KIQ) framework. KIQ combines rigid
multiatlas registration with voxel classification and statistical
shape modeling in a multistructure setting (47). The framework
was trained on the OAI cohort MRIs with semiautomatic seg-
mentations provided by iMorphics. These cartilage and menis-
cus training segmentations were supplemented with manual tibia
bone training segmentations done by Biomediq. The KIQ reg-
istration method driven by normalized mutual information was
also used for transfer of the multiecho T2 scan intensities to the
double-echo steady-state (DESS) scan volume for each subject.
The statistical shape model in KIQ was also trained on the train-
ing scan segmentations (48) and the resulting multiobject shape

Fig. 8. Sagittal knee image showing segmented femoral, tibial, and
patellofemoral cartilage maps. The cartilage T2 intensity has been colorized.
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model provided a coordinate system with intersubject anatomical
correspondence. This shape model coordinate system was used to
transfer all scan intensities to the shape model mean shape using
thin-plate spline warping steered by the shape model key points
followed by trilinear interpolation (Fig. 8). Thereby, the T2 scan
intensities could be analyzed in a common scan volume via the
shape models. After segmentation, the sagittal hemispheric cur-
vature of each condyle was mapped to a linear plane to facilitate
visual interpretation of changes through the cartilage thickness
using landmark-based thin plate spline (TPS) registration (49).
More details are contained in SI Appendix, section 1.

A common reference template I0(x ) was generated by
obtaining an image from a subject with BMI 29.6 and age 56 y.

Cohort Statistics. After preprocessing, our final cohort consisted
of baseline cartilage texture maps Ii(x ) corresponding to healthy
individuals with no symptomatic or radiographic evidence of
osteoarthritis i = 1, . . . ,N for the N = 86 subjects in the study.
Ground truth was established on 3 y follow-up to determine
which of these subjects had gone on to progress to symptomatic
osteoarthritis.

Whole-Organ Magnetic Resonance Imaging Score. As Fig. 1 indi-
cates, visual inspection appeared to be insensitive to subtle
biochemical changes reflected in the image domain. Whole-
organ magnetic resonance imaging scores (WORMS) (50) were
quantified on baseline cartilage maps and those on 3 y follow-up.
These results are presented in SI Appendix, section 2.

Cartilage Texture Morphometry. Cartilage texture portrays molec-
ular information about collagen fiber organization, water, and
proteoglycan content through T2 intensity (8–10). We evaluate
the biochemical organization of the articular cartilage tissue of the
progressors and nonprogressors through texture morphometry.

In Fig. 1, the discriminating differences between the classes
are not readily identified. The latter is the premise for our work
in 3D TBM (28) to discover a hidden discriminant pattern from
these images in an automated manner. In our prior work, we
have demonstrated our approach discovers signature changes
in the brains of older adults with age and aerobic fitness that
are opaque to visual inspection and traditional morphometric
techniques (28).

On the baseline cartilage maps, we quantified how the indi-
vidual distribution of water (as implied by T2 intensity in Ii(x ))
varied with respect to the common reference I0(x ) (28) using
TBM. The pairwise similarity between each source and template
image was measured using the mathematics of OT (28) accord-
ing to Eq. 1. A transport map fi(x ) was generated for each
sample image in the dataset to characterize the optimal mass-
preserving mapping. A transport map represents the transform
of each image in the transport domain.

We developed all 3D TBM codes in MATLAB (MathWorks).

Principal Component Analysis. Given the high dimensionality of
the data in the transport space relative to the number of sam-
ples (HDLSS), we seek techniques to reduce noise and avoid
overfitting in subsequent training phases.

One such strategy to reduce noise in the dataset was to
remove the dimensions containing little contribution to the over-
all variance. We applied the PCA technique to eliminate internal
correlation among the feature variables in the transport space. A
transport map is the transform of a particular cartilage texture
map. We concatenated the transport maps to form a data matrix
in the transport domain. Let us call the centered data matrix
that results D ∈Rp×m , where p corresponds to the number of
elements in each transport map and m is the number of subjects.

The data were then projected onto the principal components
corresponding to the top 96% of the variance for the cartilage

images during each cross-validation iteration. Based on singular-
value decomposition analysis, the data matrix can be written as
D =UΣV T .

Here, the columns of U ∈Rp×(m−1) contain the orthonormal
eigenvectors of the covariance matrix ST . Because p>>m , the
data can be summarized by m − 1 total orthonormal eigenvec-
tors. The singular values can be used to compute the fraction
of the variance captured by each eigenvector. The topmost d
vectors, where d <m − 1, corresponding to the top 96% of
the variance, were retained in this study. A reduced-dimension
matrix X ∈Rd×m is determined by projecting the data matrix
onto the top d columns of matrix U according to X =UTD
during each cross-validation iteration.

Supervised Learning. After removing internal correlation among
feature variables and denoising, a predictive classifier is trained
during each cross-validation iteration in the transport domain
on this reduced-dimension space. Our classifier is built using
supervised machine learning and evaluated on held-out data over
multiple iterations of a balanced cross-validation procedure.

Balanced Cross-Validation further describes how the data are
partitioned into training and holdout sets over multiple itera-
tions of balanced cross-validation. Here, we describe training and
testing phases for a single iteration.
Training phase. From the training data, a discriminant is com-
puted that differentiates the progressor and nonprogressor
classes using pLDA in the transport space (31). The reason is
that Euclidean distances in the transport domain correspond
to geodesic OT distances on the Riemannian manifold (further
discussed in OT-Based Recognition).

The pLDA technique computes the discriminant boundary
that maximally separates the progressor and nonprogressor
classes in the transport space according to Eq. 3 and ref. 31,

wpLDA = argmax‖w‖=1
wTSTw

wT (Sw +αI )w
, [3]

where wpLDA is a vector in the transport domain describing the
optimal separating hyperplane between the C = 2 classes. We
denote the column m of matrix X as xm . The covariance matrix
ST of the collection of reduced-dimension transport maps can
be computed according to Eq. 4. The parameter α controls
the tradeoff between the traditional linear discriminant anal-
ysis direction and one that lies in the PCA subspace. We set
α = 1:

ST =
1

M
Σm(xm − x̄ )(xm − x̄ )T

such that x̄ =
1

M
ΣM

m=1xm .

[4]

Here, SW = ΣCΣn∈C (xn − x̄c)(xn − x̄c) and represents the
within-class scatter matrix, with C = 2 representing the number
of classes.
Testing phase. We evaluate the blind predictive accuracy of
our trained classifier on the held-out data in the testing phase.
The test data are projected onto the discriminant direction
wpLDA computed from the training phase and evaluated against
the ground truth. Further details regarding the cross-validation
procedure are included in Balanced Cross-Validation.

All pLDA and PCA codes were implemented in MATLAB.

Balanced Cross-Validation. We use a balanced cross-validation
approach to evaluate the generalizability of our predictive test in
identifying future OA progression. We utilize a complete leave-
two-out cross-validation scheme. Complete cross-validation
yields the best estimation of the generalization accuracy on
unseen data (41). Through complete cross-validation, we miti-
gate the potential influence of incidental correlations.
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In each balanced cross-validation iteration, we partition the
data to leave out a pair consisting of a nonprogressor subject
and a progressor subject (leave-two-out). Under complete leave-
two-out cross-validation, our learning approach iterates over the
combinatorial space of all feasible partitions of the data when
two subjects are left out in a holdout set.

We iterate over all 1,849 feasible partitions of the dataset
(i.e., combinatorial pairings of progressor and control subject)
under our balanced cross-validation approach to determine
the overall accuracy, sensitivity, and specificity in blind predic-
tion. ROC curves were generated by computing the sensitiv-
ity and specificity of classification as the discriminant thresh-
old is varied across the range of projection scores that are
obtained when images are projected onto the linear discriminant
boundary.

Null Hypothesis Testing. In addition to complete cross-validation,
we furthermore ensure the robustness of our training algorithm
by estimating the probability that a test accuracy as high as the
one observed in this paper can be obtained by chance alone, the
null hypothesis.

Under the null hypothesis, a relationship between carti-
lage texture maps and future osteoarthritis progression can be
learned by random chance. We assess the likelihood of obtain-
ing a test accuracy as high as the one obtained in this paper
through random chance alone. From the null hypothesis, it fol-
lows statistically that the conditional probability distributions
of the cartilage texture maps would be identical regardless of
progressor or nonprogressor class labels (51).

Permutation testing is a nonparametric technique (52) to
empirically estimate the error distribution of our test accuracy
under the null hypothesis. In permutation testing, we arbitrarily
permute the assignment of labels to data over T = 1,000 permu-
tation tests. We calculate the empirical likelihood of obtaining a
test accuracy higher than the observed test accuracy by chance
over these iterations. Thus, we are able to assess the probability
of the null hypothesis for the predictive test we develop in this
paper. We report the resultant statistical significance along with
measures of accuracy, sensitivity, and specificity in the testing
phase in Tables 2 and 3.

Comparison with Existing Supervised-Learning Techniques. For
comparison, supervised learning is performed on the origi-
nal image voxels and numerical features extracted using the
WNDCHRM (35) software normalized for different feature
scales. Prior studies employed WNDCHRM features (12, 26)
to risk-stratify patients based on T2 cartilage texture maps.
Images were smoothed and preprocessed using the same TBM
preprocessing pipeline.

Furthermore, an SVM classifier using Gaussian kernel and a
random forest classifier were also trained with the same cross-
validation and null hypothesis testing procedure on the feature
sets. In prior studies, Urish et al. (11) employed an SVM classi-
fier to risk-stratify healthy patients based on T2 texture maps of
cartilage. For the SVM classifier, the kernel coefficient parame-
ter γ and the regularization parameter C were chosen to be 1/D
and 1, respectively, where D denotes the number of features in a
training sample. The tolerance value for the optimization stop-
ping criteria was 10−3. For the random forest (RF) classifier,
100 decision trees were used in the experiments. The subsam-
ples in each decision tree were drawn from the training data with
replacement. The number of subsamples in each decision tree
was equal to the training set size. The scikit-learn package (53)
of Python was used to implement both the SVM and RF classifier
algorithms.

In total, we compared our 3D TBM approach to eight different
linear and nonlinear classifiers.

Visualizing the Discriminant Cartilage Phenotype. We emphasize
that in contrast to previous approaches focusing on numerical
feature extraction to compare cartilage texture maps (11, 12,
26), the metric space defined by transport-based morphome-
try is generative. Therefore, 3D TBM provides the ability to
interrogate the learned classifier at any desired point to visu-
alize the unique corresponding image in the image domain. In
the transport domain, the discriminant directions used to clas-
sify each pair of subjects were averaged over 100 iterations of
cross-validation to yield a single direction in the transport space.
Along this discriminant direction, five discrete points were sam-
pled at the interface between control and progressor cohorts and
inverted through inverse TBM transformation (Eq. 2): at 0 (the
mean image) as well as ±2 and ±4 standard deviations toward
either side of the boundary. Figs. 4–6 were synthesized through
inverse TBM transformation from the images in the study popu-
lation. These images show the cartilage texture changes enabling
future symptomatic OA detection. The latter closes the gap
between statistical modeling and biologic interpretation of shifts
at the tissue level.

Data Availability. Data are available at the publicly accessibility
NIH, The Osteoarthritis Initiative database, https://nda.nih.gov/
oai/. Code is available at GitHub, https://github.com/rohdelab.
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23. Y.-X. J. Wáng et al., T1ρ magnetic resonance: Basic physics principles and applications
in knee and intervertebral disc imaging. Quant. Imag. Med. Surg. 5, 858 (2015).

24. Y. Zhang, J. M. Jordan, Epidemiology of osteoarthritis. Clin. Geriatr. Med. 26, 355–369
(2010).

25. C. Kauffmann et al., Computer-aided method for quantification of cartilage thickness
and volume changes using MRI: Validation study using a synthetic model. IEEE Trans.
Biomed. Eng. 50, 978–988 (2003).

26. B. G. Ashinsky et al., Machine learning classification of OARSI-scored human articular
cartilage using magnetic resonance imaging. Osteoarthritis Cartilage 23, 1704–1712
(2015).

27. S. Basu, S. Kolouri, G. K. Rohde. Detecting and visualizing cell phenotype differences
from microscopy images using transport-based morphometry. Proc. Natl. Acad. Sci.
U.S.A. 111, 3448–3453 (2014).

28. S. Kundu et al., Discovery and visualization of structural biomarkers from MRI using
transport-based morphometry. NeuroImage 167, 256–275 (2018).
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